Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction.
نویسندگان
چکیده
OBJECTIVES This study was undertaken to optimize echocardiographic parameters for successful gene delivery to the heart and to extend the method from adenoviral to plasmid deoxyribonucleic acid (DNA). BACKGROUND We have previously shown that ultrasound-targeted microbubble destruction can direct tissue expression of adenoviral transgenes to the heart. The optimal echocardiographic parameters for this technique have not been reported. METHODS Adenoviral or plasmid DNA encoding the luciferase reporter gene was incorporated into liposome microbubbles and infused intravenously into anesthetized rats. We systematically evaluated the effects of ultrasound parameters known to influence microbubble destruction, including electrocardiogram (ECG) triggering, ultrasound frequency, mode of ultrasound, and mechanical index, on gene expression in rat myocardium four days after treatment. In addition, gene expression in heart, liver, and skeletal muscle were compared between adenoviral and plasmid DNA. RESULTS Optimal ultrasound parameters for this technique include low-transmission frequency (1.3 MHz), maximal mechanical index, and ECG triggering to allow complete filling of the myocardial capillary bed by microbubbles. No difference was seen between ultraharmonics and power Doppler mode. Using adenoviral DNA, optimal ultrasound parameters yielded myocardial luciferase activity on the order of 104 relative light units/mg protein/min but with even higher liver activity. Plasmid DNA was expressed in rat myocardium at similar levels but without detectable liver expression. CONCLUSIONS Ultrasound-targeted microbubble destruction can be used to deliver adenoviral or plasmid DNA to the myocardium. This technique holds great promise in applying the rapidly expanding repertoire of gene therapies being developed for cardiac disease.
منابع مشابه
Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart.
BACKGROUND Noninvasive, tissue-specific delivery of therapeutic agents would be a valuable clinical tool. We have previously shown that ultrasound-targeted microbubble destruction can direct expression of an adenoviral reporter to the heart. The present study shows that this method can be applied to selectively deliver plasmid vectors to the heart. METHODS AND RESULTS We used albumin and lipi...
متن کاملUltrasound-Targeted Microbubble Destruction (UTMD) Assisted Delivery of shRNA against PHD2 into H9C2 Cells
Gene therapy has great potential for human diseases. Development of efficient delivery systems is critical to its clinical translation. Recent studies have shown that microbubbles in combination with ultrasound (US) can be used to facilitate gene delivery. An aim of this study is to investigate whether the combination of US-targeted microbubble destruction (UTMD) and polyethylenimine (PEI) (UTM...
متن کاملUltrasound-targeted microbubble destruction to deliver siRNA cancer therapy.
Microbubble contrast agents can specifically deliver nucleic acids to target tissues when exposed to ultrasound treatment parameters that mediate microbubble destruction. In this study, we evaluated whether microbubbles and ultrasound-targeted microbubble destruction (UTMD) could be used to enhance delivery of EGF receptor (EGFR)-directed siRNA to murine squamous cell carcinomas. Custom-designe...
متن کاملUltrasound-targeted microbubbles combined with a peptide nucleic acid binding nuclear localization signal mediate transfection of exogenous genes by improving cytoplasmic and nuclear import
The development of an efficient delivery system is critical for the successful treatment of cardiovascular diseases using non‑viral gene therapies. Cytoplasmic and nuclear membrane barriers reduce delivery efficiency by impeding the transfection of foreign genes. Thus, a gene delivery system capable of transporting exogenous genes may improve gene therapy. The present study used a novel strateg...
متن کاملUltrasound-targeted gene delivery induces angiogenesis after a myocardial infarction in mice.
OBJECTIVES This study evaluated the capacity of ultrasound-targeted microbubble destruction (UTMD) to deliver angiogenic genes, improve perfusion, and recruit progenitor cells after a myocardial infarction (MI) in mice. BACKGROUND Angiogenic gene therapy after an MI may become a clinically relevant approach to improve the engraftment of implanted cells if targeted delivery can be accomplished...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American College of Cardiology
دوره 42 2 شماره
صفحات -
تاریخ انتشار 2003